Lesson 1 Volume of Rectangular Prisms PRE-ALGEBRA The volume measure (V) of a rectangular prism is the product of the area measure of the base (B) and the measure of the height (h). $V = B \times h$ Find V if l = 6.5, w = 4, and h = 3. $$V = \underset{l \times w \times h}{B \times h}$$ $$= \underset{l \times w \times h}{| \setminus \setminus}$$ $$= 6.5 \times 4 \times 3$$ $$= \underbrace{---- \times 3}$$ The volume is _____ m³. Find *V* if l = 4, w = 3, and h = 6. $$V = B \times h$$ $$= l \times w \times h$$ $$= \underbrace{\qquad \qquad \times \qquad \qquad \times \qquad \qquad }$$ $$= \underbrace{\qquad \qquad \times \qquad \qquad \times \qquad \qquad }$$ The volume is $___$ cm³. 1. _____ m³ b ___ mm³ c ____ cm³ Complete the table for each rectangular prism described below. | | Length | Width | Height | Volume | |----|--------|--------|--------|-----------------| | 2. | 8 m | 6 m | 3 m | m ³ | | 3. | 7.5 mm | 4 mm | 6 mm | mm ³ | | 4. | 3.2 cm | 3.2 cm | 4 cm | $$ cm 3 | | 5. | 5.25 m | 2.25 m | 3 m | m ³ | | 6. | 3.5 cm | 2.5 cm | 1 cm | cm ³ | ### Lesson 1 Problem Solving PRE-ALGEBRA Solve each problem. 1. The bottom of a box is 10.5 cm long and 5 cm wide. The box is 3 cm² high. What is the volume of the box? The volume is _____ cm³. **2.** A box is 12 cm wide, 18 cm long, and 6 cm deep. What is its volume? The volume is _____ cm³. **3.** Assume each dimension in problem **2** is doubled. What would be the volume of the box? It would be _____ cm³. **4.** A cube with each dimension 10 mm has a volume of 1 cm³. How many cubic millimetres are in 1 cm³? _____ mm³ are in 1cm³. **5.** A cube with each dimension 100 cm has a volume of 1 m^3 . How many cubic centimetres are in 1 m^3 ? $_{----}$ cm³ are in 1 m³. **6.** Vicky has a box that is 1 m high, 1.5 m wide, and 2 m long. Jeff has a box that measures 1.5 m along each edge. Whose box has the greater volume? How much greater is it? _____ box has the greater volume. It is _____ m³ greater. 7. Anne has 500 cubes, each with edges 1 cm long. How many more cubes does she need to fill the box? 7 cm She needs _____ more cubes. 1. 2. 3. 5. 4. B 7. ## Lesson 2 Volume of Triangular Prisms PRE-ALGEBRA The volume measure (V) of a triangular prism is the product of the area measure of the base (B) and the measure of the height (h). $V = B \times h$ 5 mm $=\frac{1}{2}\times\underline{4}\times\underline{}\times\underline{}\times\underline{}$ $V = B \times h$ The volume is $_{----}$ m³. The volume is $\underline{\hspace{1cm}}$ mm³. Find the volume of each triangular prism. 1. $_$ cm 3 cm^3 c $_{\rm m}$ 2. $\mathbf{_{-m}^{3}$ $_{-\!-\!-\!-\!-}$ cm 3 ____ m³ ## Lesson 2 Problem Solving PRE-ALGEBRA Solve each problem. 1. Find the volume of the rectangular prism shown at the right. 1. The volume is $___cm^3$. The rectangular prism in problem 1 was cut to form these two triangular prisms. What is the volume of each triangular prism? The volume is $___ cm^3$. The tent is shaped like a triangular prism. Find its volume. The volume is $_{m}$ m^3 . 4. A wastebasket shaped like a triangular prism has a volume of 162 000 cm³. The area of its base is 1350 cm². What is the height of the wastebasket? The height is _____ cm. The top part of the tent is shaped like a triangular prism. Find the volume of the top part. The bottom part of the shaped like tent isrectangular prism. Find the volume of the bottom part. What is the volume of the tent? The volume of the top part is _____ m³. The volume of the tent is $_{----}$ m³. 3. 5. 4. # Lesson 3 Volume of Cylinders PRE-ALGEBRA The volume measure (V) of a cylinder is the product of the area measure of the base (B) and the measure of the height (h). $V = B \times h$ Find $$V$$ if $r = 2$ and $h = 6$. $$V = \underbrace{B}_{1} \times h$$ $$= \overline{\pi \times r \times r \times h}$$ $$= 3.14 \times 2 \times 2 \times 6$$ The volume is about $\frac{75.36}{}$ cm³. Find $$V$$ if $d = 8$ and $h = 5$. (Since $$d = 8, r = 4$$.) $$V = B \times h$$ $$= \pi \times r \times r \times h$$ $$= 3.14 \times \dots \times \dots \times \dots$$ The volume is about $___$ m^3 . 1. c about _____ m³ about _____ cm³ about _____ mm³ Complete the table for each cylinder described below. Use 3.14 for π . | | Diameter | Radius | Height | Approximate volume | |------------|---|----------------|--------|--------------------| | 2. | родория до до и може в оброго до до се со | $3~\mathrm{m}$ | 6 m | m ³ | | 3. | cm | 7 cm | 4 cm | $$ cm^3 | | 4. | 10 m | m | 3 m | m ³ | | 5 . | cm | 5 cm | 2 cm | $$ $ m cm^3$ | | 6. | 18 m | m | 3 m | m ³ | ### Lesson 3 Problem Solving PRE-ALGEBRA Solve each problem. Use 3.14 for π . 1. A coffee can has a 7.5-cm radius and is 20 cm high. What is the volume of the coffee can? The volume is about ____ cm³. **2.** Suppose the can in problem **1** is one-half filled with coffee. How many cubic centimetres of coffee are in the can? There are about _____ cm³ of coffee. **3.** A cylindrical container has a diameter of 4 cm and is 12 cm high. What is its volume? Its volume is about _____ cm. **4.** Suppose the container in problem **3** had a diameter of 12 cm and was 4 cm high. What would its volume be? Its volume would be about _____ cm³. **5.** A cylindrical tank has a radius of 8 m and is 4 m high. What is the volume of the tank? The volume is about $_{---}$ m^3 . **6.** Find the volume of the wading pool. The volume is about _____ m³. 7. Which can has the greater volume? How much greater? much greater? The ____ can has the greater volume. It is about ____ cm³ 2. 1. 3. 5. 6. e transmitten operation operation of the contract contr 7. greater. ### **CHAPTER 12 PRACTICE TEST** ### Volume Complete the table for each rectangular prism described below. | | Length | Width | Height | Volume | |----|--------|--------|--------|-----------------| | 1. | 6 m | 4 m | 8 m | m ³ | | 2. | 7 cm | 7 cm | 7 cm | cm ³ | | 3. | 9 m | 7.5 m | 6 m | m ³ | | 4. | 5.5 mm | 3.5 mm | 2 mm | mm ³ | Find the volume of each triangular prism. 5. a 5 m $_{---}$ cm 3 $_{----}$ mm 3 m^3 Complete the table for each cylinder described below. Use 3.14 for $\pi.$ | | Diameter | Radius | Height | Approximate volume | |----|----------|--------|--------|--------------------| | 6. | mm | 12 mm | 8 mm | mm ³ | | 7. | 16 cm | cm | 19 cm | $$ cm 3 | | 8. | m | 10 m | 12 m | m ³ | | 9. | 21 m | m | 14 m | m ³ | # **CHAPTER 13 PRETEST** ## Graphs and Probability Use the circle graph at the right to answer each question. - 1. How many adults take the subway to work? _____ adults - 2. How many adults drive a car to work? _____ adults - 3. How many adults walk to work? _____ adults - 4. How many more adults take the bus to work than ride a bicycle to work? _____ adults - **5.** What is represented by the "other" category in the circle graph? **Transportation to Work** Find the mean, median, and mode of each set of numbers. a **6.** 53, 67, 49, 52, 49, 73, 55, 80, 62 35.6, 42.8, 26.1, 30.4, 42.8, 59.3 b mean: _____ mean: _____ median: _____ median: _____ mode: mode: _____ To choose a teacher, you draw one of the cards below. Write the probability in simplest form that you will pick: 7. Mr. Alvers Mrs. Pat Von Mr. Ken Alvers - 8. a man - **9.** Mr. or Mrs. Von Mr. Ken Bruns Ms. Kari Yoshita - 10. a person who has a first name of Pat - Mr. Pat Wittier - Mr. Ken Von **11.** a a person who does **not** have a first name of Ken