Lesson 1 Points, Lines, and Line Segments shown above. A point can be Line AB (denoted \overrightarrow{AB}) names the represented by a line that passes through points A dot. Point P is and B. Does BA name the same line as \overrightarrow{AB} ? _____ Line segment MN (denoted \overline{MN}) consists of points *M* and *N* and all points on the line between M and N. Does \overline{NM} name the same segment as \overline{MN} ? _____ Complete the following as shown. b line CD or DC CD or DC $$\overrightarrow{CD}$$ or \overrightarrow{DC} line _____ or ____ or ____ line _____ or ____ or ____ line _____ or ____ or ____ Complete the following as shown. a b c $\stackrel{\bullet}{F}$ line segment $\stackrel{EF}{=}$ or $\stackrel{FE}{=}$ or $\stackrel{\overline{FE}}{=}$ endpoints: $\stackrel{E}{=}$ and $\stackrel{F}{=}$ line segment ____ or ___ endpoints: ___ and ___ s line segment ____ or ___ or ___ endpoints: ___ and ____ G line segment ____ or ___ endpoints: ___ and ____ #### Lesson 2 Rays and Angles E F Ray AB (denoted \overrightarrow{AB}) consists of point A and all points on \overrightarrow{AB} that are on the same side of A as B. The endpoint of \overrightarrow{AB} is point _____. An angle is formed by two rays that have a common endpoint. Angle \overrightarrow{DEF} (denoted $\angle DEF$) is formed by rays \overrightarrow{ED} and \overrightarrow{EF} . Does $\angle FED$ name the same angle? Complete the following as shown. angle $$ABC$$ or CBA $\angle ABC$ or $\angle CBA$ rays \overrightarrow{BA} and \overrightarrow{BC} #### **Lesson 3** Measuring Angles You can use a protractor to find the measure of an angle. If the measure of an angle is 90°, the angle is a right angle. If the measure of an angle is less than 90°, it is an acute angle. If the measure of an angle is greater than 90°, it is an obtuse angle. The measure of $\angle ABC$ is $_$ ∠ ABC is an <u>obtuse</u> angle. Find the measure of each angle. Write whether the angle is right, acute, or obtuse. 1. 2. 3. #### Opposite and Supplementary Angles Lesson 4 When two straight lines intersect, they form opposite angles and supplementary angles. Opposite angles always have the same measure. Supplementary angles are two angles whose measures have a sum of 180°. In the figure to the right, $\angle w$ and $\angle y$, $\angle x$ and $\angle z$ are both pairs of opposite angles. There are four pairs of supplementary angles in the figure. They are $\angle w$ and $\angle x$, $\angle x$ and $\angle y$, $\angle y$ and $\angle z$, $\angle z$ and $\angle w$. Identify the following. - Name an angle that is opposite to $\angle b$. - 2. Name an angle that is supplementary to $\angle d$. - 3. Name an angle that is opposite to $\angle f$. - Name an angle that is opposite to $\angle e$. 4. - Name an angle that is supplementary to $\angle h$. 5. - 6. Name an angle that is supplementary to $\angle a$. Use the figure shown at the right. 7. Name two pairs of opposite angles. 8. Name four pairs of supplementary angles. Solve. **9.** Angles m and p are opposite angles. If $\angle p$ measures 115°, what is the measure of $\angle m$? **10.** Angles j and k are supplementary angles. If $\angle j$ measures 62°, what is the measure of $\angle k$? ### Lesson 5 Parallel and Intersecting Lines Lines like \overrightarrow{AB} and \overrightarrow{CD} are called intersecting lines. What point do \overrightarrow{AB} and \overrightarrow{CD} have in common? ____ Lines like \overrightarrow{JK} and \overrightarrow{PQ} are called parallel lines. Will \overrightarrow{JK} and \overrightarrow{PQ} ever intersect, no matter how far extended? _____ Complete the following as shown. atype of lines btype of lines intersecting 2. Answer the following. - In how many points do two parallel lines intersect? - Can two lines be parallel and also intersect? - In how many points can two lines intersect? - If \overrightarrow{AB} is parallel to \overrightarrow{CD} , is \overrightarrow{CD} parallel to \overrightarrow{AB} ? #### **Lesson 6** Transversals A transversal is a line that intersects two or more lines at different points. In the figure to the right, \overrightarrow{EF} is a transversal intersecting \overrightarrow{AB} and \overrightarrow{CD} . When a transversal intersects two or more parallel lines, corresponding angles are formed. Corresponding angles are angles that hold the same position on two different parallel lines intersected by a transversal. The following pairs of angles are corresponding angles in the figure to the right. $\angle 1$ and $\angle 5$; $\angle 2$ and $\angle 6$; $\angle 3$ and $\angle 7$; $\angle 4$ and $\angle 8$ N 3 L Use the figure to identify the following. - 1. Name the parallel lines. - 2. Name the transversal. - **3.** Name the angle that corresponds to $\angle 2$. - **4.** Name the angle that corresponds to $\angle 3$. - **5.** Name the angle that corresponds to $\angle 5$. - **6.** Name the angle that corresponds to $\angle 8$. Use the figure to identify the following. - 7. Name the parallel lines. - 8. Name the transversal. - **9.** Name the angle that corresponds to $\angle 7$. - **10.** Name the angle that corresponds to ∠1. _____ - 11. Name the angle that corresponds to $\angle 4$. - **12.** Name the angle that corresponds to $\angle 6$. #### Lesson 7 Right Angles Draw a line on a sheet of paper. Mark points A, B, and C as shown above. Fold the line over itself at B. Unfold the paper. Draw a line through B along the fold line. Label it as shown. Line AC and line DE form four right angles. Angles such as $\angle DBA$, $\angle DBC$, $\angle ABE$, and $\angle CBE$ are right angles. Two lines that form right angles are called perpendicular lines. Write an R beside each right angle. a 1. d 2. U Write a *P* beside each pair of perpendicular lines. 3. #### Lesson 8 Types of Angles Compare $\angle ABC$ with a model of a right angle, such as the corner of a sheet of paper. Does $\angle ABC$ appear to be larger or smaller than a right angle? Angles like ∠ABC are called acute angles. Compare $\angle PQR$ with a model of a right angle. Does ∠*PQR* appear to be larger or smaller than a right angle? ___ Angles like $\angle PQR$ are called obtuse angles. Compare each angle with a model of a right angle. Then tell whether the angle is an acute, an obtuse, or a right angle. 1. a c 2. 3. ## Lesson 9 Types of Triangles by Angles Compare the angles of each triangle with a model of a right angle. An acute triangle contains three acute angles. Which triangle above is an acute triangle? _ A right triangle contains one right angle. Which triangle above is a right triangle? __ An **obtuse triangle** contains one obtuse angle. Which triangle above is an obtuse triangle? Compare the angles of each triangle below with a model of a right angle. Then tell whether the triangle is an acute, an obtuse, or a right triangle. 1. _ triangle triangle 2. triangle triangle 3. triangle triangle triangle triangle Types of Triangles by Angles triangle #### **Lesson 10** Types of Triangles by Sides Use a ruler to compare the lengths of the sides of each triangle. In a **scalene triangle** no two sides are congruent. Which triangle above is a scalene triangle? ___ In an isosceles triangle at least two sides are congruent. Congruent sides have the same length. Which triangles above are isosceles triangles? In an **equilateral triangle** all sides are congruent. Which triangle above is an equilateral triangle? __ Use a ruler to compare the lengths of the sides of each triangle. Then tell whether the triangle is a scalene, an isosceles, or an equilateral triangle. 1. a c triangle triangle _ triangle triangle 2. В triangle triangle 3. triangle triangle triangle #### Lesson 11 Types of Quadrilaterals NAME A parallelogram is a quadrilateral (4-sided figure) in which the opposite sides are parallel. \overrightarrow{AB} is parallel to \overrightarrow{DC} and \overrightarrow{AD} is parallel to \overrightarrow{BC} . Is figure ABCD a parallelogram? _____ A **rectangle** is a quadrilateral in which all angles are right angles. Compare each of the angles of figure *EFGH* with a model of a right angle. Is figure *EFGH* a rectangle? _____ A **rhombus** is a quadrilateral in which all sides are congruent. Use a ruler to compare the lengths of the sides of figure JKLM. Is figure *JKLM* a rhombus? _____ A square is a quadrilateral in which all angles are right angles and all sides are congruent. Compare the angles of figure PQRS with a model of a right angle and use a ruler to compare the lengths of its sides. Is figure *PQRS* a square? _____ Use the figures at the top of the page to answer the questions that follow. Which figures are rectangles? Which figure is a square? Are all rectangles squares? Are all squares rectangles? Which figures are rectangles? 3. Which figures are rhombuses? Are all squares rhombuses? Are all rhombuses squares? ### Lesson 12 Sum of Angles The three angles of a triangle have a sum of 180°. The four angles of a quadrilateral have a sum of 360°. Find the measure of the missing angle in each figure. $$45^{\circ} + 60^{\circ} = 105^{\circ}$$ $$180^{\circ} - 105^{\circ} = 75^{\circ}$$ The missing angle measures ___75°__ $$95^{\circ} + 60^{\circ} + 110^{\circ} = 265^{\circ}$$ $$360^{\circ} - 265^{\circ} = 95^{\circ}$$ The missing angle measures ___95° Find the measure of the missing angle in each figure. 1. b 2. 3. 37° # CHAPTER 10 PRACTICE TEST Geometry Name each figure. 1. b c Compare the angles of each triangle with a model of a right angle. Then tell whether the triangle is an acute, an obtuse, or a right triangle. 2. _ triangle $_{\scriptscriptstyle \perp}$ triangle In each figure below, the opposite sides are parallel. Use these figures to answer the questions that follow. а С - **3.** Which figure is a square? _____ - 4. Which figures are rectangles? - 5. Which figures are parallelograms? - **6.** Which figures are rhombuses? _____ #### CHAPTER 11 PRETEST #### Perimeter and Area a Find the perimeter (or circumference) of each figure below. Use 3.14 for π . 1. 3 cm 12 cm ____ cm ___ cm about ___ 2 mm about _____ cm _ cm Find the area of each figure below. Use 3.14 for π . $_{\rm mm}$ 3. $_{\sf L}\,{ m km}^2$ 2 km about _____ cm² 4. about_ $-m^2$ $_{\rm km^2}$ 5. ${\rm cm}^2$ about _____mm² $_{-}\,\mathrm{mm}^{2}$