#### **Lesson 1** Points, Lines, and Line Segments

shown above.

A point can be Line AB (denoted  $\overrightarrow{AB}$ ) names the represented by a line that passes through points A dot. Point P is and B. Does BA name the same line as  $\overrightarrow{AB}$ ? \_\_\_\_\_

Line segment MN (denoted  $\overline{MN}$ ) consists of points *M* and *N* and all points on the line between M and N. Does  $\overline{NM}$  name the same segment as  $\overline{MN}$ ? \_\_\_\_\_

Complete the following as shown.

b

line CD or DC CD or DC

$$\overrightarrow{CD}$$
 or  $\overrightarrow{DC}$ 



line \_\_\_\_\_ or \_\_\_\_ or \_\_\_\_



line \_\_\_\_\_ or \_\_\_\_ or \_\_\_\_



line \_\_\_\_\_ or \_\_\_\_ or \_\_\_\_

Complete the following as shown.

a

b

c

 $\stackrel{\bullet}{F}$  line segment  $\stackrel{EF}{=}$  or  $\stackrel{FE}{=}$  or  $\stackrel{\overline{FE}}{=}$  endpoints:  $\stackrel{E}{=}$  and  $\stackrel{F}{=}$ 



line segment \_\_\_\_ or \_\_\_ endpoints: \_\_\_ and \_\_\_

s line segment \_\_\_\_ or \_\_\_ or \_\_\_ endpoints: \_\_\_ and \_\_\_\_

G line segment \_\_\_\_ or \_\_\_ endpoints: \_\_\_ and \_\_\_\_

#### Lesson 2 Rays and Angles



E F

Ray AB (denoted  $\overrightarrow{AB}$ ) consists of point A and all points on  $\overrightarrow{AB}$  that are on the same side of

A as B. The endpoint of  $\overrightarrow{AB}$  is point \_\_\_\_\_.

An angle is formed by two rays that have a common endpoint. Angle  $\overrightarrow{DEF}$  (denoted  $\angle DEF$ ) is formed by rays  $\overrightarrow{ED}$  and  $\overrightarrow{EF}$ . Does  $\angle FED$  name the same angle?

Complete the following as shown.



angle 
$$ABC$$
 or  $CBA$   $\angle ABC$  or  $\angle CBA$  rays  $\overrightarrow{BA}$  and  $\overrightarrow{BC}$ 





#### **Lesson 3** Measuring Angles

You can use a protractor to find the measure of an angle.

If the measure of an angle is 90°, the angle is a right angle.

If the measure of an angle is less than 90°, it is an acute angle.

If the measure of an angle is greater than 90°, it is an obtuse angle.

The measure of  $\angle ABC$  is  $\_$ 

∠ ABC is an <u>obtuse</u> angle.



Find the measure of each angle. Write whether the angle is right, acute, or obtuse.

1.





2.





3.



#### Opposite and Supplementary Angles Lesson 4

When two straight lines intersect, they form opposite angles and supplementary angles. Opposite angles always have the same measure.

Supplementary angles are two angles whose measures have a sum of 180°.

In the figure to the right,  $\angle w$  and  $\angle y$ ,  $\angle x$  and  $\angle z$  are both pairs of opposite angles.

There are four pairs of supplementary angles in the figure.

They are  $\angle w$  and  $\angle x$ ,  $\angle x$  and  $\angle y$ ,  $\angle y$  and  $\angle z$ ,  $\angle z$  and  $\angle w$ .



Identify the following.

- Name an angle that is opposite to  $\angle b$ .
- 2. Name an angle that is supplementary to  $\angle d$ .
- 3. Name an angle that is opposite to  $\angle f$ .
- Name an angle that is opposite to  $\angle e$ . 4.
- Name an angle that is supplementary to  $\angle h$ . 5.
- 6. Name an angle that is supplementary to  $\angle a$ .

Use the figure shown at the right.

7. Name two pairs of opposite angles.



8. Name four pairs of supplementary angles.



Solve.

**9.** Angles m and p are opposite angles. If  $\angle p$  measures 115°, what is the measure of  $\angle m$ ?

**10.** Angles j and k are supplementary angles. If  $\angle j$  measures 62°, what is the measure of  $\angle k$ ?

### Lesson 5 Parallel and Intersecting Lines



Lines like  $\overrightarrow{AB}$  and  $\overrightarrow{CD}$  are called intersecting lines. What point do

 $\overrightarrow{AB}$  and  $\overrightarrow{CD}$  have in common? \_\_\_\_



Lines like  $\overrightarrow{JK}$  and  $\overrightarrow{PQ}$  are called parallel lines. Will  $\overrightarrow{JK}$  and  $\overrightarrow{PQ}$ ever intersect, no matter how far

extended? \_\_\_\_\_

Complete the following as shown.

atype of lines



btype of lines intersecting

2.







Answer the following.

- In how many points do two parallel lines intersect?
- Can two lines be parallel and also intersect?
- In how many points can two lines intersect?
- If  $\overrightarrow{AB}$  is parallel to  $\overrightarrow{CD}$ , is  $\overrightarrow{CD}$  parallel to  $\overrightarrow{AB}$ ?

#### **Lesson 6** Transversals

A transversal is a line that intersects two or more lines at different points. In the figure to the right,  $\overrightarrow{EF}$  is a transversal intersecting  $\overrightarrow{AB}$  and  $\overrightarrow{CD}$ .

When a transversal intersects two or more parallel lines, corresponding angles are formed. Corresponding angles are angles that hold the same position on two different parallel lines intersected by a transversal. The following pairs of angles are corresponding angles in the figure to the right.

 $\angle 1$  and  $\angle 5$ ;  $\angle 2$  and  $\angle 6$ ;  $\angle 3$  and  $\angle 7$ ;  $\angle 4$  and  $\angle 8$ 



N

3

L

Use the figure to identify the following.

- 1. Name the parallel lines.
- 2. Name the transversal.
- **3.** Name the angle that corresponds to  $\angle 2$ .
- **4.** Name the angle that corresponds to  $\angle 3$ .
- **5.** Name the angle that corresponds to  $\angle 5$ .
- **6.** Name the angle that corresponds to  $\angle 8$ .

Use the figure to identify the following.

- 7. Name the parallel lines.
- 8. Name the transversal.
- **9.** Name the angle that corresponds to  $\angle 7$ .
- **10.** Name the angle that corresponds to ∠1. \_\_\_\_\_
- 11. Name the angle that corresponds to  $\angle 4$ .
- **12.** Name the angle that corresponds to  $\angle 6$ .



#### Lesson 7 Right Angles



Draw a line on a sheet of paper. Mark points A, B, and C as shown above.



Fold the line over itself at B.



Unfold the paper. Draw a line through B along the fold line. Label it as shown. Line AC and line DE form four right angles.

Angles such as  $\angle DBA$ ,  $\angle DBC$ ,  $\angle ABE$ , and  $\angle CBE$  are right angles. Two lines that form right angles are called perpendicular lines.

Write an R beside each right angle.

a

1.





d



2.





U





Write a *P* beside each pair of perpendicular lines.

3.







#### Lesson 8 Types of Angles

Compare  $\angle ABC$  with a model of a right angle, such as the corner of a sheet of paper.



Does  $\angle ABC$  appear to be larger or smaller than a right angle? Angles like ∠ABC are called acute angles.

Compare  $\angle PQR$  with a model of a right angle.



Does ∠*PQR* appear to be larger or smaller than a right angle? \_\_\_ Angles like  $\angle PQR$  are called obtuse angles.

Compare each angle with a model of a right angle. Then tell whether the angle is an acute, an obtuse, or a right angle.

1.



a



c



2.







3.





## Lesson 9 Types of Triangles by Angles

Compare the angles of each triangle with a model of a right angle.







An acute triangle contains three acute angles.

Which triangle above is an acute triangle? \_

A right triangle contains one right angle.

Which triangle above is a right triangle? \_\_

An **obtuse triangle** contains one obtuse angle.

Which triangle above is an obtuse triangle?

Compare the angles of each triangle below with a model of a right angle. Then tell whether the triangle is an acute, an obtuse, or a right triangle.

1.









\_ triangle

triangle

2.



triangle

triangle



3.



triangle



triangle

triangle



triangle

Types of Triangles by Angles

triangle

#### **Lesson 10** Types of Triangles by Sides

Use a ruler to compare the lengths of the sides of each triangle.







In a **scalene triangle** no two sides are congruent.

Which triangle above is a scalene triangle? \_\_\_

In an isosceles triangle at least two sides are congruent.

Congruent sides have the same length.

Which triangles above are isosceles triangles?

In an **equilateral triangle** all sides are congruent.

Which triangle above is an equilateral triangle? \_\_

Use a ruler to compare the lengths of the sides of each triangle. Then tell whether the triangle is a scalene, an isosceles, or an equilateral triangle.

1.



a



c



triangle

triangle

\_ triangle

triangle

2.



В



triangle



triangle

3.



triangle



triangle

triangle

#### Lesson 11 Types of Quadrilaterals



NAME

A parallelogram is a quadrilateral (4-sided figure) in which the opposite sides are parallel.

 $\overrightarrow{AB}$  is parallel to  $\overrightarrow{DC}$  and  $\overrightarrow{AD}$  is parallel to  $\overrightarrow{BC}$ .

Is figure ABCD a parallelogram? \_\_\_\_\_

A **rectangle** is a quadrilateral in which all angles are right angles.

Compare each of the angles of figure *EFGH* with a model of a right angle.

Is figure *EFGH* a rectangle? \_\_\_\_\_

A **rhombus** is a quadrilateral in which all sides are congruent.

Use a ruler to compare the lengths of the sides of figure JKLM.

Is figure *JKLM* a rhombus? \_\_\_\_\_

A square is a quadrilateral in which all angles are right angles and all sides are congruent.

Compare the angles of figure PQRS with a model of a right angle and use a ruler to compare the lengths of its sides.

Is figure *PQRS* a square? \_\_\_\_\_

Use the figures at the top of the page to answer the questions that follow.

Which figures are rectangles? Which figure is a square? Are all rectangles squares? Are all squares rectangles? Which figures are rectangles? 3. Which figures are rhombuses? Are all squares rhombuses? Are all rhombuses squares?

### Lesson 12 Sum of Angles

The three angles of a triangle have a sum of 180°.

The four angles of a quadrilateral have a sum of 360°.

Find the measure of the missing angle in each figure.



$$45^{\circ} + 60^{\circ} = 105^{\circ}$$

$$180^{\circ} - 105^{\circ} = 75^{\circ}$$

The missing angle measures \_\_\_75°\_\_



$$95^{\circ} + 60^{\circ} + 110^{\circ} = 265^{\circ}$$

$$360^{\circ} - 265^{\circ} = 95^{\circ}$$

The missing angle measures \_\_\_95°

Find the measure of the missing angle in each figure.

1.



b



2.





3.



37°

# CHAPTER 10 PRACTICE TEST Geometry

Name each figure.

1.



b



c



Compare the angles of each triangle with a model of a right angle. Then tell whether the triangle is an acute, an obtuse, or a right triangle.

2.





\_ triangle



 $_{\scriptscriptstyle \perp}$  triangle

In each figure below, the opposite sides are parallel. Use these figures to answer the questions that follow.

а



С



- **3.** Which figure is a square? \_\_\_\_\_
- 4. Which figures are rectangles?
- 5. Which figures are parallelograms?
- **6.** Which figures are rhombuses? \_\_\_\_\_

#### CHAPTER 11 PRETEST

#### Perimeter and Area

a

Find the perimeter (or circumference) of each figure below. Use 3.14 for  $\pi$ .

1. 3 cm

12 cm





\_\_\_\_ cm

\_\_\_ cm

about \_\_\_



2 mm



about \_\_\_\_\_ cm



\_ cm

Find the area of each figure below. Use 3.14 for  $\pi$ .

 $_{\rm mm}$ 

3.



 $_{\sf L}\,{
m km}^2$ 

2 km





about \_\_\_\_\_ cm<sup>2</sup>

4.



about\_



 $-m^2$ 



 $_{\rm km^2}$ 

5.



 ${\rm cm}^2$ 



about \_\_\_\_\_mm<sup>2</sup>



 $_{-}\,\mathrm{mm}^{2}$